CS 355, Computer Networks, 3 credits, Fall 2015
CRN: 45896
Meets: MW, 1:30-2:45, Dana 318

Instructor: Carolyn Pe Rosiene
Email rosiene@hartford.edu
Work Phone 860.768.4699
Office Location Dana Hall 335 and Skype
Office Hours Mondays 9-11, Wednesdays 9-11, Fridays 1:30-2:30, and by appointment.

Course Description
This course provides a solid foundation in the design and implementation of a computer network. Topics will focus on network standards and standardization bodies; a layered network architecture; circuit and packet switching; streams and datagrams; physical media and network access; media access and LAN addressing; internetworking and routing; and transport layer services. Also presented are application layer protocols used on the web, file transfer, and electronic mail; and network security including cryptography, encryption, and authentication protocols.

Course Objectives
The goal of the course is to study the fundamentals of interconnecting computers to share ‘resources’. We will cover topics such as the OSI reference model, the Internet model, the role of a layered networking architecture, application layer protocols such as http and ftp, transport protocols such as TCP and UDP, congestion control techniques, and error detection and correction at the link layer.
What this course is not - this course is not a course on network administration or network programming. Although we will experiment with packet sniffing and socket programming, we will not be physically connecting computers and will not be doing any extensive network programming. This course focuses on the fundamentals of computer networks which would explain “how things work.”

Course Pre-requisites
CS 114 and CS 211

Expectations
Each student is expected to attend classes and take notes. Read the textbook(s) before attending class. Turn in homework, and other assignments on time. Take quizzes and exams as scheduled.
The instructor is available for help during scheduled office hours (check "Instructor Information") and also by appointment. Please do not wait until a test to get help. Seek help as soon as possible.
You will need to allocate about 10 hours of your week towards this course. This time will be used for the following:
• reading the chapters in the text book assigned
• completing activities assigned
• completing homework assignments
• studying for your tests and exams

Textbook
Computer Networking: A Top-Down Approach, 6/E
James F. Kurose, University of Massachusetts, Amherst
Keith W. Ross, Polytechnic University, Brooklyn
©2013 • Addison-Wesley • Cloth, 864 pp
Published 02/24/2012

Software
Download latest version of:
• Portable Python 2.7.3 - http://www.portablepython.com/
• Wireshark - http://www.wireshark.org/
Reading Assignment Schedule

Subject to Change

Chapter 1 Computer Networks and the Internet 1
1.1 What Is the Internet? 2
1.1.1 A Nuts-and-Bolts Description 2
1.1.2 A Services Description 5
1.1.3 What Is a Protocol? 7
1.2 The Network Edge 9
1.2.1 Access Networks 12
1.2.3 Physical Media 18
1.3 The Network Core 22
1.3.1 Packet Switching 22
1.3.2 Circuit Switching 27
1.3.3 A Network of Networks 32
1.4 Delay, Loss, and Throughput in Packet-Switched Networks 35
1.4.1 Overview of Delay in Packet-Switched Networks 35
1.4.2 Queuing Delay and Packet Loss 39
1.4.3 End-to-End Delay 42
1.4.4 Throughput in Computer Networks 44
1.5 Protocol Layers and Their Service Models 47
1.5.1 Layered Architecture 47
1.5.2 Encapsulation 53
1.6 Networks Under Attack 55
1.7 History of Computer Networking and the Internet 60
1.7.1 The Development of Packet Switching: 1961—1972 60
1.7.2 Proprietary Networks and Internetworking: 1972—1980 62
1.7.3 A Proliferation of Networks: 1980—1990 63
1.7.4 The Internet Explosion: The 1990s 64
1.7.5 The New Millennium 65
1.8 Summary 66
Homework Problems and Questions 68
Problems 70
Wireshark Lab 78
Interview: Leonard Kleinrock 80

Chapter 2 Application Layer 83
2.1 Principles of Network Applications 84
2.1.1 Network Application Architectures 86
2.1.2 Processes Communicating 88
2.1.3 Transport Services Available to Applications 91
2.1.4 Transport Services Provided by the Internet 93
2.1.5 Application-Layer Protocols 96
2.1.6 Network Applications Covered in This Book 97
2.2 The Web and HTTP 98
2.2.1 Overview of HTTP 98
2.2.2 Non-Persistent and Persistent Connections 100
2.2.3 HTTP Message Format 103
2.2.4 User-Server Interaction: Cookies 108
2.2.5 Web Caching 110
2.2.6 The Conditional GET 114
2.3 File Transfer: FTP 116
2.3.1 FTP Commands and Replies 118
2.4 Electronic Mail in the Internet 118
2.4.1 SMTP 121
2.4.2 Comparison with HTTP 124
2.4.3 Mail Message Format 125
2.4.4 Mail Access Protocols 125
2.5 DNS–The Internet’s Directory Service 130
2.5.1 Services Provided by DNS 131
2.5.2 Overview of How DNS Works 133
2.5.3 DNS Records and Messages 139
2.6 Peer-to-Peer Applications 144
2.6.1 P2P File Distribution 145
2.6.2 Distributed Hash Tables (DHTs) 151
2.6.3 Case Study: P2P Internet Telephony with Skype 158
2.7 Socket Programming: Creating Network Applications 156
2.7.1 Socket Programming with UDP 157
2.7.2 Socket Programming with TCP 163
2.8 Summary 168
Homework Problems and Questions 169
Problems 171
Socket Programming Assignments 179
Wireshark Labs 181
Interview: Bram Cohen 182

Test 1

Chapter 3 Transport Layer 185
3.1 Introduction and Transport-Layer Services 186
3.1.1 Relationship Between Transport and Network Layers 186
3.1.2 Overview of the Transport Layer in the Internet 189
3.2 Multiplexing and Demultiplexing 191
3.3 Connectionless Transport: UDP 198
3.3.1 UDP Segment Structure 202
3.3.2 UDP Checksum 202
3.4 Principles of Reliable Data Transfer 204
3.4.1 Building a Reliable Data Transfer Protocol 206
3.4.2 Pipelined Reliable Data Transfer Protocols 215
3.4.3 Go-Back-N (GBN) 218
3.4.4 Selective Repeat (SR) 223
3.5 Connection-Oriented Transport: TCP 230
3.5.1 The TCP Connection 231
3.5.2 TCP Segment Structure 233
3.5.3 Round-Trip Time Estimation and Timeout 238
3.5.4 Reliable Data Transfer 242
3.5.5 Flow Control 250
3.5.6 TCP Connection Management 252
3.6 Principles of Congestion Control 259
3.6.1 The Causes and the Costs of Congestion 259
3.6.2 Approaches to Congestion Control 265
3.6.3 Network-Assisted Congestion-Control Example: ATM ABR Congestion Control 266
3.7 TCP Congestion Control 269
3.7.1 Fairness 279
3.8 Summary 283
Homework Problems and Questions 285
Problems 288
Programming Assignments 300
Wireshark Lab: Exploring TCP 301
Wireshark Lab: Exploring UDP 301
Interview: Sally Floyd 302
Chapter 4 The Network Layer 305
4.1 Introduction 306
4.1.1 Forwarding and Routing 308
4.1.2 Network Service Models 310
4.2 Virtual Circuit and Datagram Networks 313
4.2.1 Virtual-Circuit Networks 314
4.2.2 Datagram Networks 317
4.2.3 Origins of VC and Datagram Networks 319
4.3 What’s Inside a Router? 320
4.3.1 Input Processing 322
4.3.2 Switching 324
4.3.3 Output Processing 326
4.3.4 Where Does Queuing Occur? 327
4.3.5 The Routing Control Plane 331
4.4 The Internet Protocol (IP): Forwarding and Addressing in the Internet 331
4.4.1 Datagram Format 332
4.4.2 IPv4 Addressing 338
4.4.3 Internet Control Message Protocol (ICMP) 353
4.4.4 IPv6 356
4.4.5 A Brief Introduction into IP Security 362
4.5 Routing Algorithms 363
4.5.1 The Link-State (LS) Routing Algorithm 366
4.5.2 The Distance-Vector (DV) Routing Algorithm 371
4.5.3 Hierarchical Routing 379
4.6 Routing in the Internet 383
4.6.1 Intra-AS Routing in the Internet: RIP 384
4.6.2 Intra-AS Routing in the Internet: OSPF 388
4.6.3 Inter-AS Routing: BGP 390
4.7 Broadcast and Multicast Routing 399
4.7.1 Broadcast Routing Algorithms 400
4.7.2 Multicast 405
4.8 Summary 412
Homework Problems and Questions 413
Problems 416
Socket Programming Assignment 428
Programming Assignment 429
Wireshark Labs 430
Interview: Vinton G. Cerf 431

Chapter 5 The Link Layer: Links, Access Networks, and LANs 433
5.1 Introduction to the Link Layer 434
5.1.1 The Services Provided by the Link Layer 436
5.1.2 Where Is the Link Layer Implemented? 437
5.2 Error-Detection and -Correction Techniques 438
5.2.1 Parity Checks 440
5.2.2 Checksumming Methods 442
5.2.3 Cyclic Redundancy Check (CRC) 443
5.3 Multiple Access Links and Protocols 445
5.3.1 Channel Partitioning Protocols 448
5.3.2 Random Access Protocols 449
5.3.3 Taking-Turns Protocols 459
5.3.4 DOCSIS: The Link-Layer Protocol for Cable Internet Access 460
5.4 Switched Local Area Networks 461
5.4.1 Link-Layer Addressing and ARP 462
5.4.2 Ethernet 469
5.4.3 Link-Layer Switches 476
5.4.4 Virtual Local Area Networks (VLANs) 482
5.5 Link Virtualization: A Network as a Link Layer 486
5.5.1 Multiprotocol Label Switching (MPLS) 487
5.6 Data Center Networking 490
5.7 Retrospective: A Day in the Life of a Web Page Request 495
5.7.1 Getting Started: DHCP, UDP, IP, and Ethernet 495
5.7.2 Still Getting Started: DNS, ARP 497
5.7.3 Still Getting Started: Intra-Domain Routing to the DNS Server 498
5.7.4 Web Client-Server Interaction: TCP and HTTP 499
5.8 Summary 500
Homework Problems and Questions 502
Problems 503
Wireshark Labs 510
Interview: Simon S. Lam 511

Test 4

Chapter 6 Wireless and Mobile Networks 513
6.1 Introduction 514
6.2 Wireless Links and Network Characteristics 519
6.2.1 CDMA 522
6.3 WiFi: 802.11 Wireless LANs 526
6.3.1 The 802.11 Architecture 527
6.3.2 The 802.11 MAC Protocol 531
6.3.3 The IEEE 802.11 Frame 537
6.3.4 Mobility in the Same IP Subnet 541
6.3.5 Advanced Features in 802.11 542
6.3.6 Personal Area Networks: Bluetooth and Zipbee 544
6.4 Cellular Internet Access 546
6.4.1 An Overview of Cellular Network Architecture 547
6.4.2 3G Cellular Data Networks: Extending the Internet to Cellular Subscribers 550
6.4.3 On to 4G: LTE 553
6.5 Mobility Management: Principles 555
6.5.1 Addressing 557
6.5.2 Routing to a Mobile Node 559
6.6 Mobile IP 564
6.7 Managing Mobility in Cellular Networks 570
6.7.1 Routing Calls to a Mobile User 571
6.7.2 Handoffs in GSM 572
6.8 Wireless and Mobility: Impact on Higher-Layer Protocols 575
6.9 Summary 578
Homework Problems and Questions 578
Problems 580
Wireshark Labs 583
Interview: Deborah Estrin 584

Chapter 7 Multimedia Networking 587
7.1 Multimedia Networking Applications 588
7.1.1 Properties of Video 588
7.1.2 Properties of Audio 590
7.1.3 Types of Multimedia Network Applications 591
7.2 Streaming Stored Video 593
7.2.1 UDP Streaming 595
7.2.2 HTTP Streaming 596
7.2.3 Adaptive Streaming and DASH 600
7.2.4 Content Distribution Networks 602
7.2.5 Case Studies: Netflix, YouTube, and KanKan 608
7.3 Voice-over-IP 612
7.3.1 Limitations of the Best-Effort IP Service 612
7.3.2 Removing Jitter at the Receiver for Audio 614
7.3.3 Recovering from Packet Loss 618
7.3.4 Case Study: Internet Telephony with Skype 621
7.4 Protocols for Real-Time Interactive Applications 623
7.4.1 RTP 623
7.4.2 SIP 626
7.5 Network Support for Multimedia 632
7.5.1 Dimensioning Best-Effort Networks 634
7.5.2 Providing Multiple Classes of Service 636
7.5.3 Diffserv 648
7.5.4 Per-Connection Quality of Service (QoS) Guarantee: Resource Reservation and Call Admission 652
7.6 Summary 655
Homework Problems and Questions 656
Problems 658
Programming Assignment 666
Interview: Henning Schulzrinne 668

Chapter 8 Security in Computer Networks 671
8.1 What Is Network Security? 672
8.2 Principles of Cryptography 675
8.2.1 Symmetric Key Cryptography 676
8.2.2 Public Key Encryption 683
8.3 Message Integrity and Digital Signatures 688
8.3.1 Cryptographic Hash Functions 689
8.3.2 Message Authentication Code 691
8.3.3 Digital Signatures 693
8.4 End-Point Authentication 700
8.4.1 Authentication Protocol ap1.0 700
8.4.2 Authentication Protocol ap2.0 701
8.4.3 Authentication Protocol ap3.0 701
8.4.4 Authentication Protocol ap3.1 703
8.4.5 Authentication Protocol ap4.0 703
8.5 Securing E-mail 705
8.5.1 Secure E-mail 706
8.5.2 PGP 710
8.6 Securing TCP Connections: SSL 711
8.6.1 The Big Picture 713
8.6.2 A More Complete Picture 716
8.7 Network Layer Security: IPsec and Virtual Private Networks 718
8.7.1 IPsec and Virtual Private Networks (VPNs) 718
8.7.2 The AH and ESP Protocols 720
8.7.3 Security Associations 720
8.7.4 The IPsec Datagram 721
8.7.5 IKE: Key Management in IPsec 725
8.8 Securing Wireless LANs 726
8.8.1 Wired Equivalent Privacy (WEP) 726
8.8.2 IEEE802.11i 728
8.9 Operational Security: Firewalls and Intrusion Detection Systems 731
8.9.1 Firewalls 731
8.9.2 Intrusion Detection Systems 739
8.10 Summary 742
Homework Problems and Questions 744
Problems 746
Wireshark Lab 752
IPsec Lab 752
Interview: Steven M. Bellovin 753

Test 5

Course Policies
Email & Blackboard
Course materials (announcements, homework assignments, etc.) will be made available through Blackboard at http://blackboard.hartford.edu. Blackboard is to be used as a supplement to class lectures. All important announcements will be made in class. Routine announcements will be made available on Blackboard. However, you are responsible for all announcements and expectations explained in both Blackboard and during class. You are not to rely solely on Blackboard.

Your Blackboard account allows you to personalize your information, including your preferred email account. In your "Blackboard Home Page" on the left frame, there is a "Personal Information" link which allows you to edit your information. It is your responsibility to make sure that the email account set here is the one you check regularly and that the Inbox for that email is not rejecting incoming mail.

Grading
All oral and written work submitted must be of the highest quality. You will be graded on your performance and quality of the work required and not on the amount of time spent nor amount of effort. Any piece of work turned in for a grade is subject to an oral examination and the grade for the work hinges on the result of the student’s knowledge, not what is submitted.

Final Grade:
Expect one homework assignment for each chapter covered. With the exception of Chapter 1, expect a test after each chapter. A project will be assigned at the end of the semester to allow students to research and present a topic relating to computer architecture.

Final letter grades are assigned as follows:

<table>
<thead>
<tr>
<th>Assignments - roughly 1 per week</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>20%</td>
</tr>
<tr>
<td>Test 2</td>
<td>10%</td>
</tr>
<tr>
<td>Test 3</td>
<td>10%</td>
</tr>
<tr>
<td>Test 4</td>
<td>10%</td>
</tr>
<tr>
<td>Test 5</td>
<td>10%</td>
</tr>
</tbody>
</table>

Final letter grades are assigned as follows:

<table>
<thead>
<tr>
<th>100 to 94 = A</th>
<th>87 to 89.99 = B+</th>
<th>77 to 79.99 = C+</th>
<th>67 to 69.99 = D+</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 to 93.99 = A-</td>
<td>84 to 86.99 = B-</td>
<td>74 to 76.99 = C-</td>
<td>64 to 66.99 = D</td>
</tr>
<tr>
<td>0 to 59.99 = F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Due Dates: Due dates are to be watched carefully! If you miss an assignment (after 3rd day - see Homework Policy) or exam, you are not able to submit the work anymore. This means that you receive a 0 for any missed work.

Pass/No Pass Option Students: Students who are registered with a PASS/NO PASS option must receive a final grade of 65 or better to receive a P.

"My Grades"
Up-to-date grade information is available 24/7 under "My Grades". It also shows your "Weighted Total". This is your up-to-date, cumulative, weighted grade.

Class Participation

<table>
<thead>
<tr>
<th>Level of participation</th>
<th>Rubric</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>• Actively supports, engages and listens to peers (ongoing)</td>
</tr>
</tbody>
</table>
Homework Assignments
All homework assignments are to be worked on independently by each student. Discussions as to what the problem is and very general, top-level solutions are allowed between students. Work may not be copied from another source and will constitute cheating if done so. Any work, or part of your work, that is borrowed from another source must be stated so in the assignment and must be pre-approved by the instructor or preceptor. Failure to do so will constitute plagiarism.
Each assignment must be submitted by following instructions posted on Blackboard. Electronic submissions are due at the end of the day (11:59 pm) on the date due. All assignments must be submitted through Blackboard (View/Complete... link). Do not email your assignment to the instructor or preceptor. No homework is accepted via email. Similarly, no assignment will be submitted through the Digital Dropbox unless it is pre-approved by the instructor.
All assignment submitted is subject to an oral examination. Upon the request of the instructor, the student will explain (in person) the work submitted. The grade of the assignment hinges on how well the student knows and understands what was submitted.
Late Penalty: Any assignment that is late will receive a deduction of 10% every 24 hours (a day). Work that is more than 3 days late will not be accepted. Assignments of which answers have been given will also not be accepted. For example, if an assignment is due Friday evening and if you turn it in anytime on Sunday, the grade is deducted 20%; any work turned in after the following Monday will receive a grade of 0.

Test and Examination
All tests and exams are closed book exams and typically take the entire class period. Make up exams will not be given except in cases of extremely extenuating circumstances and are pre-arranged.

UH Academic Honesty Policy: Strictly Enforced
Your work for this course (assignments, labs, quizzes, tests, exams) must be completed by you - the student - without the help of external sources such as the Internet or a friend. **Googling answers online is NOT ACCEPTABLE and constitutes academic dishonesty.**

At the first violation of academic dishonesty, the student receives a 0 for the work. On second offense, the student receives an F for the course.

Academic Misconduct: In the event that it is determined that you violated the Academic Honesty Policy, found in "the Source," the dean of your college will be notified and a note will be placed in your permanent file. If previous violations have been filed, any penalty that may be assigned for the offense may be more severe than for a first time offense. If this is the first recorded offense, subsequent violations of the honesty policy may then incur a steeper penalty.

Email & Blackboard

Course materials (announcements, homework assignments, etc.) will be made available through Blackboard at http://blackboard.hartford.edu. Blackboard is to be used as a supplement to class lectures. All important announcements will be made in class. Routine announcements will be made available on Blackboard. However, you are responsible for all announcements and expectations explained in both Blackboard and during class. You are not to rely solely on Blackboard.

Your Blackboard account allows you to personalize your information, including your preferred email account. In your "Blackboard Home Page" on the left frame, there is a "Personal Information" link which allows you to edit your information. It is your responsibility to make sure that the email account set here is the one you check regularly and that the Inbox for that email is not rejecting incoming mail.

Student Illness

The instructor recognizes that students may occasionally become incapacitated by a brief illness or injury and will be unable to attend class or complete a graded assignment or test on time. In the latter case, you are expected to notify your instructor (in advance if at all possible) that you cannot complete the work due to illness or injury. Following the **University of Hartford's Policy of Student Illness**, as listed on The Source, the student must:

1. visit the University Health Center, a doctor, or hospital for treatment on the day that you are sick and get documentation of the visit,
2. email the instructor in advance (or if not possible, within 24 hours of missed class, test, or assignment) to tell her that you cannot attend (and/or complete work) and that you are seeking or have sought treatment, and
3. as soon as you are able to come to class, bring your documentation of your doctor's visit to your instructor and arrange to make up missed work.

Allowing you to make up missed tests and assignments is at the instructor's discretion. For extended illness (a week or more), email the academic services office of YOUR college or school. Documentation of treatment is required. Do not visit the University Health Center after the day you are sick. They will not issue documentation that you were sick on the previous day.

Participation and Attendance

Students are expected to attend ALL classes and are responsible for missed classes and lecture materials. Again, you are expected to attend every single class during the semester. Additional material will be provided and covered in class as the instructor deems appropriate. Any material and information you miss is your responsibility. No excuses will be accepted for poor grades. If you must be absent from a class, you must let me know either by phone or e-mail and you are responsible for any material covered or
Informing me of your absence does NOT excuse you from any work due that day nor permit you to makeup an exam.

Computer and Other Electronic Equipment-use Policy

When classes meet in a room equipped with computers, students are expected to use the computers for the purposes of completing assigned work only. At no circumstances will a student be allowed to surf the Internet, check email during a class, or use the computers for any other purpose. In violation, a student will face serious consequences. Use of any electronic equipment (or otherwise) that is annoying or disrupting is not allowed in class. Such devices include mobile phones, beepers, PDAs, laptops, among others.

Students with Special Needs

Student athletes and students registered with Learning Plus must inform the instructor of their special needs as soon as possible. This also applies to other students with any other concerns. The instructor will accommodate the student based on their special needs.