CS 320, Concepts of Programming Languages, 3 credits, Spring 2016
CRN: 15412
Meets: TR 10:50-12:05, Dana 318
Instructor: Carolyn Pe Rosiene
Email rosiene@hartford.edu
Work Phone 860.768.4699
Office Location Dana Hall 335 and Skype
Office Hours TR 9:50am-10:40am; 12:30pm-1:45pm except 1/21, 2/4, 2/9, 2/18, 3/3, 3/8, 3/24, 4/7, 4/12, 4/21, 4/26

Course Description
Introduction to programming language paradigms including imperative, functional, object-oriented, logic, and concurrent. Example languages of each paradigm is compared and contrasted. Abstract programming language description is introduced.

Course Objectives
The goal of this course is to provide students with the tools necessary for the critical evaluation of existing and future programming languages and constructs. It should answer a myriad of questions including: Why are there so many different programming languages? How and why were they developed? In what ways are they similar? What are their differences? What kinds of programming languages may be developed and used in the future? Why wouldn’t we simply continue to use what we have now?

Outcomes:
1. Students will be able to understand and write context-free grammars using BNF/EBNF notations and syntax diagrams.
2. Students will be able to understand core programming language concepts that include types, polymorphism, scopes, memory management, parameter passing styles, and formal semantics.
3. Students will be able to understand and use the concepts of:
 - functional programming - pattern matching, type inference, parametric polymorphism, nested functions, higher-order functions, data and type constructors,
 - object-oriented programming - inheritance, encapsulation, subtyping polymorphism, dynamic dispatch, and exception handling,
 - logic programming - resolution and unification.
4. Students will be able to write simple programs using the programming languages Scheme, ML, Java, C, C++, and Prolog.

Course Pre-requisites
CS 220

Expectations
Each student is expected to attend classes and take notes. Read the textbook(s) before attending class. Turn in homework, and other assignments on time. Take quizzes and exams as scheduled.

The instructor is available for help during scheduled office hours (check “Instructor Information”) and also by appointment. Please do not wait until a test to get help. Seek help as soon as possible.

You will need to allocate about 12 hours of your week towards this course. This time will be used for the following:

- reading the chapters in the text book assigned
- completing activities assigned
- completing homework assignments
- studying for your tests and exams

Textbook

Hardcover or E-Text of: Programming Languages: Principles and Practices, 3rd Edition

- Kenneth C. Louden San Jose State University
- Kenneth A. Lambert Washington and Lee University
- ISBN-10: 1111529418
- 704 Pages Hardcover
- Previous Editions: 2003, 1993
- ©2012 Published

Software

Latest versions of:
3. Any C++ compiler and IDE such as Visual Studio at http://www.microsoft.com/visualstudio/eng/downloads#d-express-windows-desktop
4. SWI-Prolog at http://www.swi-prolog.org/

Hardware Notes
Data is erased from lab computers in D318 and D230 every time you log out. You must remember to manage the various files you use/create accordingly.

Students may choose to use a USB flash drive (jump drive) to store their work. If so, you will need a 1GB or larger drive and you should bring it to every class. Alternatively, you may store your data on the CS department file server (accessible as the G: drive) or you may upload your files to the cloud.

Remember that computer storage devices do fail. You are advised to make regular backups of your work using multiple devices. Loss of data due to disk failure is not an acceptable excuse for missing a homework deadline.

CS Account
All CS students have been given a "CS Account". This computer account works in Dana 230 (CS lab) and Dana 318 (CS classroom). The software required for this course are available in these rooms.

- Account credentials:
 - Usernames = First name initial + first 8 characters of last name (ex. John Doe is "jdoe")
 - Passwords = 123456

- If you cannot login, contact the CS system administrators (admins@cs.hartford.edu) with your:
 - First name, Last name, your CS instructor name, and CS course

- There is also a temporary account which is only functional for a couple of weeks into the semester. Please do not store any files in this account and should not be used past the first week of school.
 - Username = 318guest
 - Password = 318guest

The Department Computer Science, as custodian of all information stored on the network, may inspect and/or close an account without prior notice upon any indication of abuse. Account owners must adhere to the computer use policies established by the University of Hartford. These policies can be found in the conduct section of The Source student handbook. Each account owner is responsible for his or her own account. If any abuse originates from your account you will be held liable.

Reading Assignment Schedule
Subject to Change

Chapter 1 Introduction
 1.1 The Origins of Programming Languages3
 1.2 Abstractions in Programming Languages8
 1.3 Computational Paradigms15
 1.4 Language Definition16
 1.5 Language Translation18
 1.6 The Future of Programming Languages .19

Chapter 3 Functional Programming
 3.1 Programs as Functions47
 3.2 Scheme: A Dialect of Lisp50
 3.3 ML: Functional Programming with Static Typing65
 3.4 Delayed Evaluation77
 3.5 Haskell—A Fully Curried Lazy Language with Overloading81
 3.6 The Mathematics of Functional Programming: Lambda Calculus90

Test 1

Chapter 4 Logic Programming
 4.1 Logic and Logic Programs105
 4.2 Horn Clauses109
 4.3 Resolution and Unification111
 4.4 The Language Prolog115
 4.5 Problems with Logic Programming ...126
 4.6 Curry: A Functional Logic Language ..131

Chapter 5 Object-Oriented Programming
 5.1 Software Reuse and Independence143
 5.2 Smalltalk144
 5.3 Java162
 5.4 C++181
 5.5 Design Issues in Object-Oriented Languages191
 5.6 Implementation Issues in Object-Oriented Languages195

Test 2
Chapter 6 Syntax
6.1 Lexical Structure of Programming Languages204
6.2 Context-Free Grammars and BNFs.208
6.3 Parse Trees and Abstract Syntax Trees213
6.4 Ambiguity, Associativity, and Precedence.216
6.5 EBNFs and Syntax Diagrams220
6.6 Parsing Techniques and Tools224
6.7 Lexics vs. Syntax vs. Semantics235
6.8 Case Study: Building a Syntax Analyzer for TinyAda.237

Chapter 7 Basic Semantics
7.1 Attributes, Binding, and Semantic Functions257
7.2 Declarations, Blocks, and Scope260
7.3 The Symbol Table ..269
7.4 Name Resolution and Overloading282
7.5 Allocation, Lifetimes, and the Environment289
7.6 Variables and Constants297
7.7 Aliases, Dangling References, and Garbage303
7.8 Case Study: Initial Static Semantic Analysis of TinyAda309

Test 3

Chapter 8 Data Types
8.1 Data Types and Type Information328
8.2 Simple Types ...332
8.3 Type Constructors ...335
8.4 Type Nomenclature in Sample Languages349
8.5 Type Equivalence ...352
8.6 Type Checking ...359
8.7 Type Conversion ...364
8.8 Polymorphic Type Checking367
8.9 Explicit Polymorphism376
8.10 Case Study: Type Checking in TinyAda382

Chapter 9 Control I—Expressions and Statements
9.1 Expressions ..403
9.2 Conditional Statements and Guards410
9.3 Loops and Variations on WHILE417
9.4 The GOTO Controversy and Loop Exits420
9.5 Exception Handling423
9.6 Case Study: Computing the Values of Static Expressions in TinyAda432

Test 4

Chapter 10 Control II—Procedures and Environments
10.1 Procedure Definition and Activation445
10.2 Procedure Semantics447
10.3 Parameter-Passing Mechanisms451
10.4 Procedure Environments, Activations, and Allocation459
10.5 Dynamic Memory Management473
10.6 Exception Handling and Environments477
10.7 Case Study: Processing Parameter Modes in TinyAda479

Chapter 11 Abstract Data Types and Modules
11.1 The Algebraic Specification of Abstract Data Types494
11.2 Abstract Data Type Mechanisms and Modules498
11.3 Separate Compilation in C, C++ Namespaces, and Java Packages502
11.4 Ada Packages ...509
11.5 Modules in ML ...515
11.6 Modules in Earlier Languages519
11.7 Problems with Abstract Data Type Mechanisms524
11.8 The Mathematics of Abstract Data Types 532

Final Exam - SATURDAY, MAY 7, 8am-10am

Grading Policies
Quality Work: All oral and written work submitted must be of the highest quality. You will be graded on your performance and quality of the work required and not on the amount of time spent nor amount of effort. Any piece of work turned in for a grade is subject to an oral examination and the grade for the work hinges on the result of the student’s knowledge, not what is submitted.
Expect one homework assignment for each chapter covered, a test after a couple of chapters.
Final Grade:
Expect one homework assignment for each chapter covered. With the exception of Chapter 1, expect a test after each chapter. A project will be assigned at the end of the semester to allow students to research and present a topic relating to computer architecture. Final letter grades are assigned as follows:

<table>
<thead>
<tr>
<th>Level of participation</th>
<th>Rubric</th>
</tr>
</thead>
</table>
| A | • Actively supports, engages and listens to peers (ongoing)
 • Arrives fully prepared at every class
 • Plays an active role in discussions (ongoing)
 • Comments advance the level and depth of the dialogue (consistently)
 • Group dynamic and level of discussion are consistently better because of student's presence |
| B | • Makes a sincere effort to interact with peers (ongoing)
 • Arrives mostly, if not fully, prepared (ongoing)
 • Participates constructively in discussions
 • Makes relevant comments based on the assigned reading material (ongoing)
 • Group dynamic and level of discussion are occasionally better (never worse) because of the student’s presence |
| C | • Limited interaction with peers
 • Preparation, and therefore level of participation, are both inconsistent
 • When prepared, participates constructively in discussions and makes relevant comments based on the assigned material |

Assignments: about one per week 35%
Tests 40%
Final Exam 15%

<table>
<thead>
<tr>
<th>100 to 94 = A</th>
<th>87 to 89.99 = B+</th>
<th>77 to 79.99 = C+</th>
<th>67 to 69.99 = D+</th>
<th>0 to 59.99 = F</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 to 93.99 = A-</td>
<td>84 to 86.99 = B</td>
<td>74 to 76.99 = C</td>
<td>64 to 66.99 = D</td>
<td></td>
</tr>
<tr>
<td>80 to 83.99 = B-</td>
<td>70 to 73.99 = C-</td>
<td>60 to 63.99 = D-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Course Policies

UH Academic Honesty Policy: Strictly Enforced

University of Hartford Academic Honesty Policy

The purpose of the academic honesty policy is to provide a clear statement to students and faculty of the University's expectations regarding academic honesty and to set forth procedures for the enforcement of that policy. The procedures in this academic honesty policy are administrative functions and are not subject to the same rules as in criminal or civil proceedings. Throughout the following policy, the term college refers to any one of the schools or colleges of the University. The term University-wide program refers to programs such as multimedia Web design and development or the Bachelor of University Studies, which do not reside in a college. The term department chair refers to a department chair or, in the case of colleges that do not have departments, the equivalent of a department chair.

- All students are expected to observe generally accepted principles of scholarly writing in all examinations, compositions, papers, essays, tests, quizzes, reports, and dissertations whether written in the class room or outside. Sources of information used by a student in the preparation of work submitted as a basis for credit, or for a grade, or to satisfy graduate or undergraduate thesis requirements shall be clearly indicated in some conventional manner, such as by the use of quotation marks, footnotes, and bibliography.
- Students are forbidden to submit as their own any project, paper, or creative work that is in whole or part the work of another.
- The use of term-papers writing service is prohibited. Also prohibited is the use of term papers obtained from the Internet, in whole or in part.
- All examinations and quizzes are to be completed without reference to books or notes except when the instructor of a course shall have given explicit authorization for an "open-book examination" or some other specified sort of assistance. Except as authorized by the instructor, no student is to give or receive assistance in the completion of an examination or a quiz.
- Other examples of academic dishonesty include, but are not limited to, the falsification of academic documents, such as transcripts, registration materials, withdrawal forms, or grade reports, as well as the unauthorized reading, removing, or copying of any academic document or record maintained by any member of the faculty or administration.

Your work for this course (assignments, labs, quizzes, tests, exams) must be completed by you - the student - without the help of external sources such as the Internet or a friend. Googling answers online is NOT ACCEPTABLE and constitutes academic dishonesty.

At the first violation of academic dishonesty, the student receives a 0 for the work. On second offense, the student receives an F for the course.

A&S Academic Misconduct: In the event that it is determined that you violated the Academic Honesty Policy, found in "the Source," the dean of your college will be notified and a note will be placed in your permanent file. If previous violations have been filed, any penalty that may be assigned for the offense may be more severe than for a first time offense. If this is the first recorded offense, subsequent violations of the honesty policy may then incur a steeper penalty.

Email & Blackboard

Course materials (announcements, homework assignments, etc.) will be made available through Blackboard at http://blackboard.hartford.edu. Blackboard is to be used as a supplement to class lectures. All important announcements will be made in class. Routine announcements will be made available on Blackboard. However, you are responsible for all announcements and expectations explained in both Blackboard and during class. You are not to rely solely on Blackboard. Your Blackboard account allows you to personalize your information, including your preferred email account. In your "Blackboard Home Page" on the left frame, there is a "Personal Information" link which allows you to edit your information. It is your responsibility to make sure that the email account set here is the one you check regularly and that the Inbox for that email is not rejecting incoming mail.

Student Illness

The instructor recognizes that students may occasionally become incapacitated by a brief illness or injury and will be unable to attend class or complete a graded assignment or test on time. In the latter case, you are expected to notify your instructor (in advance if at all possible) that you cannot complete the work due to illness or injury. Following the University of Hartford's Policy of Student Illness as listed on The Source, the student must:
1. visit the University Health Center, a doctor, or hospital for treatment on the day that you are sick and get documentation of the visit,
2. email the instructor in advance (or if not possible, within 24 hours of missed class, test, or assignment) to tell her that you cannot attend (and/or complete work) and that you are seeking or have sought treatment, and
3. As soon as you are able to come to class, bring your documentation of your doctor’s visit to your instructor and arrange to make up missed work.

Allowing you to make up missed tests and assignments is at the instructor’s discretion. For extended illness (a week or more), email the academic services office of YOUR college or school. Documentation of treatment is required. Do not visit the University Health Center after the day you are sick. They will not issue documentation that you were sick on the previous day.

Participation and Attendance

Students are expected to attend ALL classes and are responsible for missed classes and lecture materials. Again, you are expected to attend every single class during the semester. Additional material will be provided and covered in class as the instructor deems appropriate. Any material and information you miss is your responsibility. No excuses will be accepted for poor grades. If you must be absent from a class, you must let me know either by phone or e-mail and you are responsible for any material covered or homework assigned. Informing me of your absence does NOT excuse you from any work due that day nor permit you to makeup an exam.

Computer and Other Electronic Equipment-use Policy

When classes meet in a room equipped with computers, students are expected to use the computers for the purposes of completing assigned work only. At no circumstances will a student be allowed to surf the Internet, check email during a class, or use the computers for any other purpose. In violation, a student will face serious consequences. Use of any electronic equipment (or otherwise) that is annoying or disrupting is not allowed in class. Such devices include mobile phones, beepers, PDAs, laptops, among others.

Students with Special Needs

Student athletes and students registered with Learning Plus must inform the instructor of their special needs as soon as possible. This also applies to other students with any other concerns. The instructor will accommodate the student based on their special needs.