Table of Contents

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION TO ME•PRO... 12
 1.1 Key Features of ME•Pro ... 12
 1.2 Purchasing, Downloading and Installing ME•Pro.......................... 15
 1.3 Ordering a Manual ... 13
 1.4 Memory Requirements ... 13
 1.5 Differences between TI-89 and TI-92 plus 13
 1.6 Starting ME•Pro .. 13
 1.7 How to use this Manual .. 14
 1.8 Manual Disclaimer .. 14
 1.9 Summary .. 15

PART I: ANALYSIS... 16

CHAPTER 2: INTRODUCTION TO ANALYSIS ... 17
 2.1 Introduction .. 17
 2.2 Features of Analysis ... 18
 2.3 Finding Analysis ... 18
 2.4 Solving a Problem in Analysis .. 18
 2.5 Tips for Analysis ... 20
 2.6 Function keys ... 20
 2.7 Session Folders, Variable Names ... 22
 2.8 Overwriting of variable values in graphing 22
 2.9 Reserved Variables .. 22

CHAPTER 3: STEAM TABLES.. 23
 3.1 Saturated Steam Properties .. 23
 3.2 Superheated Steam Properties .. 23
 3.3 Air Properties ... 23
 3.4 Using Steam Tables ... 24
 3.5 Validity Range for Temperature and Pressure 25

CHAPTER 4: THERMOCOUPLES... 26
 4.1 Introduction .. 26
 4.2 Using the Thermocouple Function ... 26
 4.3 Basis for Temperature/Voltage Conversions 27

CHAPTER 5: CAPITAL BUDGETING.. 28
 5.1 Using Capital Budgeting .. 28

CHAPTER 6: EE FOR MECHANICAL ENGINEERS.................................... 32
 6.1 Impedance Calculations .. 32
 6.2 Circuit Performance ... 33
 6.3 Wye ↔ Δ Conversion .. 34

CHAPTER 7: EFFLUX... 36
 7.1 Constant Liquid Level ... 36
 7.2 Varying Liquid Level ... 36
 7.3 Conical Vessel .. 37
 7.4 Horizontal Cylinder ... 38
 7.5 Large Rectangular Orifice ... 38
 7.6 ASME Weirs ... 39
 7.6.1 Rectangular Notch ... 39
 7.6.2 Triangular Weir ... 39
 7.6.3 Suppressed Weir ... 40
 7.6.4 Cipolletti Weir ... 40

CHAPTER 8: SECTION PROPERTIES ... 42
 8.1 Rectangle ... 42
8.2 Hollow Rectangle ... 43
8.3 Circle .. 43
8.4 Circular Ring ... 44
8.5 Hollow Circle .. 45
8.6 1 Section - Uneven ... 45
8.7 1 Section - Even ... 46
8.8 C Section ... 47
8.9 T Section ... 48
8.10 Trapezoid .. 48
8.11 Polygon ... 49
8.12 Hollow Polygon ... 50

CHAPTER 9: HARDNESS NUMBER .. 52
9.1 Compute Hardness Number .. 52

PART II: EQUATIONS ... 54

CHAPTER 10: INTRODUCTION TO EQUATIONS 55
10.1 Solving a Set of Equations .. 55
10.2 Viewing an Equation or Result in Pretty Print 56
10.3 Viewing a Result in different units 56
10.4 Viewing Multiple Solutions ... 57
10.5 when (...) - conditional constraints when solving equations 58
10.5 Arbitrary Integers for periodic solutions to trigonometric functions 58
10.7 Partial Solutions ... 59
10.8 Copy/Paste ... 59
10.9 Graphing a Function ... 59
10.10 Storing and recalling variable values in ME*Pro-creation of session folders .. 61
10.11 solve, nsolve, and solve and user-defined functions (UDF) 61
10.12 Entering a guessed value for the unknown using nsolve ... 61
10.13 Why can't I compute a solution? 62
10.14 Care in choosing a consistent set of equations 62
10.15 Notes for the advanced user in troubleshooting calculations 62

CHAPTER 11: BEAMS AND COLUMNS 64
11.1 Simple Beams .. 64
11.1.1 Uniform Load .. 64
11.1.2 Point Load ... 66
11.1.3 Moment Load ... 68
11.2 Cantilever Beams ... 70
11.2.1 Uniform Load .. 70
11.2.2 Point Load .. 71
11.2.3 Moment Load ... 73
11.3. Columns .. 75
11.3.1 Buckling ... 75
11.3.2 Eccentricity, Axial Load ... 76
11.3.3 Secant Formula ... 77
11.3.4 Imperfections in Columns .. 79
11.3.5 Inelastic Buckling ... 81

CHAPTER 12: EE FOR MEs ... 83
12.1 Basic Electricity ... 83
12.1.1 Resistance Formulas .. 83
12.1.2 Ohm’s Law and Power .. 84
12.1.3 Temperature Effect ... 85
12.2 DC Motors ... 86
12.2.1 DC Series Motor .. 86
12.2.2 DC Shunt Motor .. 88
12.3 DC Generators ... 90
12.3.1 DC Series Generator .. 90
12.3.2 DC Shunt Generator .. 91
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4 AC Motors</td>
<td>92</td>
</tr>
<tr>
<td>12.4.1 Three φ Induction Motor I</td>
<td>92</td>
</tr>
<tr>
<td>12.4.2 Three φ Induction Motor II</td>
<td>94</td>
</tr>
<tr>
<td>12.4.3 1 Induction Motor</td>
<td>96</td>
</tr>
<tr>
<td>CHAPTER 13: GAS LAWS</td>
<td>98</td>
</tr>
<tr>
<td>13.1 Ideal Gas Laws</td>
<td>98</td>
</tr>
<tr>
<td>13.1.1 Ideal Gas Law</td>
<td>98</td>
</tr>
<tr>
<td>13.1.2 Constant Pressure</td>
<td>99</td>
</tr>
<tr>
<td>13.1.3 Constant Volume</td>
<td>101</td>
</tr>
<tr>
<td>13.1.4 Constant Temperature</td>
<td>103</td>
</tr>
<tr>
<td>13.1.5 Internal Energy/Enthalpy</td>
<td>104</td>
</tr>
<tr>
<td>13.2 Kinetic Gas Theory</td>
<td>106</td>
</tr>
<tr>
<td>13.3 Real Gas Laws</td>
<td>108</td>
</tr>
<tr>
<td>13.3.1 van der Waals: Specific Volume</td>
<td>108</td>
</tr>
<tr>
<td>13.3.2 van der Waals: Molar form</td>
<td>109</td>
</tr>
<tr>
<td>13.3.3 Redlich-Kwong: Sp. Vol</td>
<td>110</td>
</tr>
<tr>
<td>13.3.4 Redlich-Kwong: Molar</td>
<td>112</td>
</tr>
<tr>
<td>13.4 Reverse Adiabatic</td>
<td>113</td>
</tr>
<tr>
<td>13.5 Polytropic Process</td>
<td>115</td>
</tr>
<tr>
<td>CHAPTER 14: HEAT TRANSFER</td>
<td>118</td>
</tr>
<tr>
<td>14.1 Basic Transfer Mechanisms</td>
<td>118</td>
</tr>
<tr>
<td>14.1.1 Conduction</td>
<td>118</td>
</tr>
<tr>
<td>14.1.2 Convection</td>
<td>120</td>
</tr>
<tr>
<td>14.1.3 Radiation</td>
<td>121</td>
</tr>
<tr>
<td>14.2 1D Heat Transfer</td>
<td>122</td>
</tr>
<tr>
<td>14.2.1 Conduction</td>
<td>122</td>
</tr>
<tr>
<td>14.2.1.1 Plane Wall</td>
<td>122</td>
</tr>
<tr>
<td>14.2.1.2 Convective Source</td>
<td>123</td>
</tr>
<tr>
<td>14.2.1.3 Radiative Source</td>
<td>125</td>
</tr>
<tr>
<td>14.2.1.4 Plate and Two Fluids</td>
<td>127</td>
</tr>
<tr>
<td>14.2.2 Electrical Analogy</td>
<td>128</td>
</tr>
<tr>
<td>14.2.2.1 Two Conductors in Series</td>
<td>129</td>
</tr>
<tr>
<td>14.2.2.2 Two Conductors in Parallel</td>
<td>131</td>
</tr>
<tr>
<td>14.2.2.3 Parallel-Series</td>
<td>132</td>
</tr>
<tr>
<td>14.2.3 Radial Systems</td>
<td>135</td>
</tr>
<tr>
<td>14.2.3.1 Hollow Cylinder</td>
<td>135</td>
</tr>
<tr>
<td>14.2.3.2 Hollow Sphere</td>
<td>136</td>
</tr>
<tr>
<td>14.2.3.3 Cylinder with Insulation Wrap</td>
<td>137</td>
</tr>
<tr>
<td>14.2.3.4 Cylinder - Critical radius</td>
<td>139</td>
</tr>
<tr>
<td>14.2.3.5 Sphere - Critical radius</td>
<td>141</td>
</tr>
<tr>
<td>14.3 Semi-Infinite Solid</td>
<td>142</td>
</tr>
<tr>
<td>14.3.1 Step Change Surface Temperature</td>
<td>142</td>
</tr>
<tr>
<td>14.3.2 Constant Surface Heat Flux</td>
<td>143</td>
</tr>
<tr>
<td>14.3.3 Surface Convection</td>
<td>145</td>
</tr>
<tr>
<td>14.4 Radiation</td>
<td>146</td>
</tr>
<tr>
<td>14.4.1 Blackbody Radiation</td>
<td>146</td>
</tr>
<tr>
<td>14.4.2 Non-Blackbody radiation</td>
<td>148</td>
</tr>
<tr>
<td>14.4.3 Thermal Radiation Shield</td>
<td>149</td>
</tr>
<tr>
<td>CHAPTER 15: THERMODYNAMICS</td>
<td>152</td>
</tr>
<tr>
<td>15.1 Fundamentals</td>
<td>152</td>
</tr>
<tr>
<td>15.2 System Properties</td>
<td>153</td>
</tr>
<tr>
<td>15.2.1 Energy Equations</td>
<td>153</td>
</tr>
<tr>
<td>15.2.2 Maxwell Relations</td>
<td>155</td>
</tr>
<tr>
<td>15.3 Vapor and Gas Mixture</td>
<td>157</td>
</tr>
<tr>
<td>15.3.1 Saturated Liquid/Vapor</td>
<td>157</td>
</tr>
<tr>
<td>15.3.2 Compressed Liquid-Sub cooled</td>
<td>159</td>
</tr>
</tbody>
</table>
15.4 Ideal Gas Properties ... 160
 15.4.1 Specific Heat... 160
 15.4.2 Quasi-Equilibrium Compression... 162
15.5 First Law... 163
 15.5.1 Total System Energy .. 163
 15.5.2 Closed System: Ideal Gas ... 167
 15.5.2.1 Constant Pressure ... 167
 15.5.2.2 Binary Mixture .. 169
15.6 Second Law... 171
 15.6.1 Heat Engine Cycle .. 171
 15.6.1.1 Carnot Engine ... 171
 15.6.1.2 Diesel Cycle ... 173
 15.6.1.3 Dual Cycle ... 177
 15.6.1.4 Otto Cycle ... 180
 15.6.1.5 Brayton Cycle ... 184
 15.6.2 Clapeyron Equation .. 186

Chapter 16: Machine Design.. 288
16.1 Stress: Machine Elements .. 188
 16.1.1 Cylinders ... 188
 16.1.2 Rotating Rings ... 189
 16.1.3 Pressure and Shrink Fits ... 190
 16.1.4 Crane Hook ... 192
16.2 Hertzian Stresses ... 193
 16.2.1 Two Spheres .. 193
 16.2.2 Two Cylinders .. 195
 16.3.1 Bearing Life ... 197
 16.3.2 Petroff's law .. 198
 16.3.3 Pressure Fed Bearings .. 199
 16.3.4 Lewis Formula .. 200
 16.3.5 AGMA Stresses ... 201
 16.3.6 Shafts ... 203
16.3.7 Clutches and Brakes .. 204
 16.3.7.1 Clutches ... 204
 16.3.7.1.1 Clutches ... 204
 16.3.7.2 Uniform Wear - Cone Brake 206
 16.3.7.3 Uniform Pressure - Cone Brake 207
16.4 Spring Design ... 208
 16.4.1 Bending ... 208
 16.4.1.1 Rectangular Plate ... 208
 16.4.1.2 Triangular Plate ... 209
 16.4.1.3 Semi-Elliptical .. 210
 16.4.2 Coiled Springs ... 212
 16.4.2.1 Cylindrical Helical - Circular wire 212
 16.4.2.2 Rectangular Spiral .. 213
 16.4.3 Torsional Spring .. 215
 16.4.3.1 Circular Straight Bar ... 215
 16.4.3.2 Rectangular Straight Bar 216
 16.4.4 Axial Loaded ... 217
 16.4.4.1 Conical Circular Section 217
 16.4.4.2 Cylindrical - Helical ... 219
 16.4.4.2.1 Rectangular Cross Section 219
 16.4.4.2.2 Circular Cross Section 220

Chapter 17: Pumps and Hydraulics ... 222
17.1 Basic Definitions .. 222
17.2 Pump Power ... 223
17.3 Centrifugal Pumps .. 225
17.3.1 Affinity Law-Variable Speed ... 225
17.3.2 Affinity Law-Constant Speed .. 226
17.3.3 Pump Similarity .. 227
17.3.4 Centrifugal Compressor ... 228
17.3.5 Specific Speed ... 229

Chapter 18: Waves and Oscillations ... 231
18.1 Simple Harmonic Motion ... 231
18.1.1 Linear Harmonic Oscillation .. 231
18.1.2 Angular Harmonic Oscillation ... 232
18.2 Pendulums ... 233
18.2.1 Simple Pendulum ... 233
18.2.2 Physical Pendulum .. 235
18.2.3 Torsional Pendulum ... 236
18.3 Natural and Forced Vibrations .. 236
18.3.1 Natural Vibrations ... 236
18.3.1.1 Free Vibration .. 236
18.3.1.2 Overdamped Case (ζ>1) .. 238
18.3.1.3 Critical Damping (ζ=1) .. 239
18.3.1.4 Underdamped Case (ζ<1) ... 241
18.3.2 Forced Vibrations ... 244
18.3.2.1 Undamped Forced Vibration 244
18.3.2.2 Damped Forced Vibration .. 245
18.3.3 Natural Frequencies .. 247
18.3.3.1 Stretched String .. 247
18.3.3.2 Vibration Isolation .. 248
18.3.3.3 Uniform Beams .. 249
18.3.3.3.1 Simply Supported .. 250
18.3.3.3.2 Both Ends Fixed ... 251
18.3.3.3.3 1 Fixed End / 1 Free End 252
18.3.3.3.4 Both Ends Free ... 254
18.3.3.4 Flat Plates .. 255
18.3.3.4.1 Circular Flat Plate .. 255
18.3.3.4.2 Rectangular Flat Plate ... 257

Chapter 19: Refrigeration and Air Conditioning 259
19.1 Heating Load ... 259
19.2 Refrigeration ... 261
19.2.1 General Cycle ... 261
19.2.2 Reverse Carnot .. 262
19.2.3 Reverse Brayton ... 263
19.2.4 Compression Cycle ... 264

Chapter 20: Strength Materials .. 267
20.1 Stress and Strain Basics ... 267
20.1.1 Normal Stress and Strain .. 267
20.1.2 Volume Dilatation .. 268
20.1.3 Shear Stress and Modulus .. 269
20.2 Load Problems .. 270
20.2.1 Axial Load ... 270
20.2.2 Temperature Effects ... 271
20.2.3 Dynamic Load .. 272
20.3 Stress Analysis .. 274
20.3.1 Stress on an Inclined Section ... 274
20.3.2 Pure Shear ... 275
20.3.3 Principal Stresses .. 275
20.3.4 Maximum Shear Stress .. 276
20.3.5 Plane Stress - Hooke's Law .. 277
20.4 Mohr's Circle Stress ... 280
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.3.3 Gyroscope Motion</td>
<td>346</td>
</tr>
<tr>
<td>22.4 Projectile Motion</td>
<td>347</td>
</tr>
<tr>
<td>22.5 Collisions</td>
<td>349</td>
</tr>
<tr>
<td>22.5.1 Elastic Collisions</td>
<td>349</td>
</tr>
<tr>
<td>22.5.1.1 1D Collision</td>
<td>349</td>
</tr>
<tr>
<td>22.5.1.2 2D Collisions</td>
<td>350</td>
</tr>
<tr>
<td>22.5.2 Inelastic Collisions</td>
<td>351</td>
</tr>
<tr>
<td>22.5.2.1 1D Collisions</td>
<td>351</td>
</tr>
<tr>
<td>22.5.2.2 Oblique Collisions</td>
<td>352</td>
</tr>
<tr>
<td>22.6 Gravitational Effects</td>
<td>354</td>
</tr>
<tr>
<td>22.6.1 Law of Gravitation</td>
<td>354</td>
</tr>
<tr>
<td>22.6.2 Kepler's Laws</td>
<td>356</td>
</tr>
<tr>
<td>22.6.3 Satellite Orbit</td>
<td>358</td>
</tr>
<tr>
<td>22.7 Friction</td>
<td>360</td>
</tr>
<tr>
<td>22.7.1 Friction Force</td>
<td>360</td>
</tr>
<tr>
<td>22.7.2 Wedge</td>
<td>362</td>
</tr>
<tr>
<td>22.7.3 Rotating Cylinder</td>
<td>362</td>
</tr>
<tr>
<td>22.8 Statics</td>
<td>364</td>
</tr>
<tr>
<td>22.8.1 Parabolic cable</td>
<td>364</td>
</tr>
<tr>
<td>22.8.2 Catenary cable</td>
<td>365</td>
</tr>
<tr>
<td>PART III: REFERENCE</td>
<td>368</td>
</tr>
<tr>
<td>Chapter 23: Introduction to Reference</td>
<td>369</td>
</tr>
<tr>
<td>23.1 Introduction</td>
<td>369</td>
</tr>
<tr>
<td>23.2 Finding Reference</td>
<td>369</td>
</tr>
<tr>
<td>23.3 Reference Screens</td>
<td>370</td>
</tr>
<tr>
<td>23.4 Using Reference Tables</td>
<td>370</td>
</tr>
<tr>
<td>Chapter 24: Engineering Constants</td>
<td>372</td>
</tr>
<tr>
<td>24.1 Using Constants</td>
<td>372</td>
</tr>
<tr>
<td>Chapter 25: Transforms</td>
<td>374</td>
</tr>
<tr>
<td>25.1 Using Transforms</td>
<td>374</td>
</tr>
<tr>
<td>Chapter 26: Valves and Fitting Loss</td>
<td>376</td>
</tr>
<tr>
<td>26.1 Valves and Fitting Loss</td>
<td>376</td>
</tr>
<tr>
<td>Chapter 27: Friction Coefficients</td>
<td>377</td>
</tr>
<tr>
<td>27.1 Friction Coefficients Screens</td>
<td>377</td>
</tr>
<tr>
<td>Chapter 28: Relative Roughness of Pipes</td>
<td>378</td>
</tr>
<tr>
<td>28.1 Relative Roughness Screens</td>
<td>378</td>
</tr>
<tr>
<td>Chapter 29: Water-Physical Properties</td>
<td>379</td>
</tr>
<tr>
<td>29.1 Water-Physical Properties Screens</td>
<td>379</td>
</tr>
<tr>
<td>Chapter 30: Gases and Vapors</td>
<td>380</td>
</tr>
<tr>
<td>30.1 Gases and Vapors Screens</td>
<td>380</td>
</tr>
<tr>
<td>Chapter 31: Thermal Properties</td>
<td>382</td>
</tr>
<tr>
<td>31.1 Thermal Properties Screens</td>
<td>381</td>
</tr>
<tr>
<td>Chapter 32: Fuels and Combustion</td>
<td>382</td>
</tr>
<tr>
<td>32.1 Fuels and Combustion Screens</td>
<td>382</td>
</tr>
<tr>
<td>Chapter 33: Refrigerants</td>
<td>383</td>
</tr>
<tr>
<td>33.1 Refrigerants Screens</td>
<td>383</td>
</tr>
<tr>
<td>Chapter 34: SI Prefixes</td>
<td>385</td>
</tr>
<tr>
<td>34.1 Using SI Prefixes</td>
<td>385</td>
</tr>
<tr>
<td>Chapter 35: Greek Alphabet</td>
<td>386</td>
</tr>
<tr>
<td>PART IV: APPENDIX AND INDEX</td>
<td>387</td>
</tr>
<tr>
<td>Appendix A: Frequently Asked Questions</td>
<td>387</td>
</tr>
<tr>
<td>A.1 Questions and Answers</td>
<td>390</td>
</tr>
<tr>
<td>A.2 General Questions</td>
<td>390</td>
</tr>
<tr>
<td>A.3 Analysis Questions</td>
<td>392</td>
</tr>
<tr>
<td>A.4 Equations Questions</td>
<td>392</td>
</tr>
<tr>
<td>A.5 Graphing</td>
<td>395</td>
</tr>
</tbody>
</table>
Table of Contents

1 Introduction to EE•Pro... i
 1.1 Key Features of EE•Pro ... i
 1.2 Download/Purchase Information ii
 1.3 Manual Ordering .. ii
 1.4 Memory Requirements .. ii
 1.5 Differences between TI-89 and TI-92 plus iii
 1.6 Beginning EE•Pro ... iii
 1.7 Manual Organization .. iii
 1.8 Disclaimer ... iv
 1.9 Summary ... iv

Part I: Analysis

2 Introduction to Analysis .. 1
 2.1 Introduction ... 1
 2.2 Setting up an Analysis Problem ... 1
 2.3 Solving Problems in Analysis .. 3
 2.4 Special Function Keys in Analysis Routines 4
 2.5 Data Fields, Analysis Functions and Sample Problems 5
 Example 2.1 .. 7
 Example 2.2 .. 7
 Example 2.3 .. 8
 2.6 Session Folders, Variable Names 9

3 AC Circuits ... 10
 3.1 Impedance Calculations .. 10
 Example 3.1 .. 11
 3.2 Voltage Divider .. 11
 Example 3.2 .. 11
 3.3 Current Divider .. 12
 Example 3.3 .. 12
 3.4 Circuit Performance ... 13
 Example 3.4 .. 14

4 Polyphase Circuits .. 15
 4.1 Wye ↔Δ Conversion ... 15
 Example 4.1 .. 16
 4.2 Balanced Wye Load .. 16
 Example 4.2 .. 17
 4.3 Balanced Δ Load .. 17
 Example 4.3 .. 18

5 Ladder network .. 19
 5.1 Using Ladder Network .. 19
 5.2 Using the Ladder Network .. 22
 Example 5.1 .. 22
 Example 5.2 .. 23
Part II: Equations

13 Error Functions
- 13.1 Using Error Function
 - Example 13.1

14 Capital Budgeting
- 14.1 Using Capital Budgeting
 - Example 14.1

15 Introduction to Equations
- 15.1 Solving a set of Equations
- 15.2 Viewing an Equation or Result in Pretty Print
- 15.3 Viewing a Result in different units
- 15.4 Viewing Multiple Solutions
- 15.5 Partial Solutions
- 15.6 Copy/Paste
- 15.7 Graphing a Function
- 15.8 Storing and recalling variable values in EE•Pro
- 15.9 solve, nsolve, and csolve
- 15.10 Entering a guess value for the unknown
- 15.11 Why can’t I compute a solution?
- 15.12 Care in choosing a consistent set of equations
- 15.13 Notes for the advanced user in troubleshooting calculations

16 Resistive Circuits
- 16.1 Resistance Formulas
 - Example 16.1
- 16.2 Ohm’s Law and Power
 - Example 16.2
- 16.3 Temperature Effect on resistance
 - Example 16.3
- 16.4 Maximum Power Transfer
 - Example 16.4
- 16.5 Voltage and Current Source Equivalence
 - Example 16.5

17 Capacitors and Electric Fields
- 17.1 Point Charge
 - Example 17.1
- 17.2 Long Charged Line
 - Example 17.2
- 17.3 Charged Disk
 - Example 17.3
- 17.4 Parallel Plates
 - Example 17.4
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.5</td>
<td>Parallel Wires</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Example 17.5</td>
<td>18</td>
</tr>
<tr>
<td>17.6</td>
<td>Coaxial Cable</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Example 17.6</td>
<td>18</td>
</tr>
<tr>
<td>17.7</td>
<td>Sphere</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Example 17.7</td>
<td>19</td>
</tr>
<tr>
<td>18</td>
<td>Inductors and Magnetism</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Variables</td>
<td>21</td>
</tr>
<tr>
<td>18.1</td>
<td>Long Line</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Example 18.1</td>
<td>22</td>
</tr>
<tr>
<td>18.2</td>
<td>Long Strip</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Example 18.2</td>
<td>23</td>
</tr>
<tr>
<td>18.3</td>
<td>Parallel Wires</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Example 18.3</td>
<td>23</td>
</tr>
<tr>
<td>18.4</td>
<td>Loop</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Example 18.4</td>
<td>24</td>
</tr>
<tr>
<td>18.5</td>
<td>Coaxial Cable</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Example 18.5</td>
<td>25</td>
</tr>
<tr>
<td>18.6</td>
<td>Skin Effect</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Example 18.6</td>
<td>26</td>
</tr>
<tr>
<td>19</td>
<td>Electron Motion</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Variables</td>
<td>27</td>
</tr>
<tr>
<td>19.1</td>
<td>Beam Deflection</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Example 19.1</td>
<td>28</td>
</tr>
<tr>
<td>19.2</td>
<td>Thermionic Emission</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Example 19.2</td>
<td>29</td>
</tr>
<tr>
<td>19.3</td>
<td>Photoemission</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Example 19.3</td>
<td>29</td>
</tr>
<tr>
<td>20</td>
<td>Meters and Bridge Circuits</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Variables</td>
<td>31</td>
</tr>
<tr>
<td>20.1</td>
<td>A, V, Ω Meters</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Example 20.1</td>
<td>32</td>
</tr>
<tr>
<td>20.2</td>
<td>Wheatstone Bridge</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Example 20.2</td>
<td>33</td>
</tr>
<tr>
<td>20.3</td>
<td>Wien Bridge</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Example 20.3</td>
<td>34</td>
</tr>
<tr>
<td>20.4</td>
<td>Maxwell Bridge</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Example 20.4</td>
<td>35</td>
</tr>
<tr>
<td>20.5</td>
<td>Owen Bridge</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Example 20.5</td>
<td>36</td>
</tr>
<tr>
<td>20.6</td>
<td>Symmetrical Resistive Attenuator</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Example 20.6</td>
<td>37</td>
</tr>
<tr>
<td>20.7</td>
<td>Unsymmetrical Resistive Attenuator</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Example 20.7</td>
<td>38</td>
</tr>
<tr>
<td>21</td>
<td>RL and RC Circuits</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Variables</td>
<td>39</td>
</tr>
<tr>
<td>21.1</td>
<td>RL Natural Response</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Example 21.1</td>
<td>40</td>
</tr>
<tr>
<td>21.2</td>
<td>RC Natural Response</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Example 21.2</td>
<td>41</td>
</tr>
<tr>
<td>21.3</td>
<td>RL Step Response</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Example 21.3</td>
<td>42</td>
</tr>
</tbody>
</table>
Part III: Reference

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Part III - Introduction to Reference</td>
<td>1</td>
</tr>
<tr>
<td>32.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>32.2</td>
<td>Accessing the Reference Section</td>
<td>1</td>
</tr>
<tr>
<td>32.3</td>
<td>Reference Screens</td>
<td>2</td>
</tr>
<tr>
<td>32.4</td>
<td>Viewing Reference Tables</td>
<td>3</td>
</tr>
<tr>
<td>33</td>
<td>Resistor Color Chart</td>
<td>5</td>
</tr>
<tr>
<td>33.1</td>
<td>Using the Resistor Color Chart</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Example 33.1</td>
<td>6</td>
</tr>
<tr>
<td>34</td>
<td>Standard Component Values</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Example 34.1</td>
<td>7</td>
</tr>
<tr>
<td>35</td>
<td>Semiconductor Data</td>
<td>8</td>
</tr>
<tr>
<td>36</td>
<td>Boolean Expressions</td>
<td>12</td>
</tr>
<tr>
<td>36.1</td>
<td>Using Boolean Expressions</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Example 36.1</td>
<td>12</td>
</tr>
<tr>
<td>37</td>
<td>Boolean Algebra</td>
<td>14</td>
</tr>
<tr>
<td>37.1</td>
<td>Using Boolean Algebra Properties</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Example 37.1</td>
<td>14</td>
</tr>
<tr>
<td>38</td>
<td>Transforms</td>
<td>16</td>
</tr>
<tr>
<td>38.1</td>
<td>Using Transforms</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Example 38.1</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Example 38.2</td>
<td>17</td>
</tr>
<tr>
<td>39</td>
<td>Constants</td>
<td>19</td>
</tr>
<tr>
<td>39.1</td>
<td>Using Constants</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Example 39.1</td>
<td>19</td>
</tr>
<tr>
<td>40</td>
<td>SI Prefixes</td>
<td>20</td>
</tr>
<tr>
<td>40.1</td>
<td>Using SI Prefixes</td>
<td>20</td>
</tr>
<tr>
<td>41</td>
<td>Greek Alphabet</td>
<td>21</td>
</tr>
<tr>
<td>Appendix A Frequently Asked Questions</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>A.1 Questions and Answers</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A.2 General Questions</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A.3 Analysis Questions</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>A.4 Equation Questions</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>A.5 Reference Questions</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix B Warranty and Technical Support</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1 da Vinci License Agreement</td>
<td>5</td>
</tr>
<tr>
<td>B.2 How to contact Customer Support</td>
<td>6</td>
</tr>
</tbody>
</table>

| Appendix C Bibliography | 7 |

<table>
<thead>
<tr>
<th>Appendix D TI 89 and TI 92 plus- Display and Keystroke Differences</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1 Display Property Differences between the TI-89 and TI-92 plus</td>
<td>9</td>
</tr>
<tr>
<td>D.2 Keyboard Differences Between TI-89 and TI-92 Plus</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix E Error Messages</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.1 General Error Messages</td>
<td>14</td>
</tr>
<tr>
<td>E.2 Analysis Error Messages</td>
<td>15</td>
</tr>
<tr>
<td>E.3 Equation Error Messages</td>
<td>16</td>
</tr>
<tr>
<td>E.4 Reference Error Messages</td>
<td>17</td>
</tr>
</tbody>
</table>

| Appendix F System variables and Reserved names | 18 |
EE200 Users Guide

For TI-92 Plus Calculators
Copyright © 2000 Unit-Smart Software

This version of the EE200 Users Guide applies to version 1.0 of the EE200 software.

September 7, 2000

author’s note to EE200 users –

Writing software for the use of a large group of people – college students, in this case – can be a lesson in humility. The user interface which seems so manifestly obvious and intuitive to its programmer is, not infrequently, a puzzle to many potential users. EE200 version 1.0 may turn out to be no better than most software in this respect. Nevertheless I’m convinced that, for those freshman and sophomore engineering students who are willing to try out EE200 by running the four examples in this short manual, the program will prove to be useful.

Naturally I believe the program is useful because I wrote it, but there is more to it than that. The program was developed while I myself was taking the first circuit analysis course sequence at Oregon State University. I wrote it, initially for my own use, because I found myself making more errors than I wanted to on homework and exams, and taking so long to work out solutions that I didn’t have time to go back and check my work. It frustrated me that even when I could write down the correct equations, I still missed getting the right answer because of arithmetic or algebra mistakes.

I have earned a living as a computer programmer for thirty years, so I am used to relying on computers to make up for my own weaknesses in memory, arithmetic, and higher math. The TI-89 and TI-92 Plus “calculators” – actually pocket-sized computers more powerful than the PCs of a few years ago – provide plenty of resources for the EE200 program to help me avoid errors, speed up my work, and give me the time to check my answers.

EE200 has already proved valuable to me in sophomore-level circuits courses. I hope that it will be as helpful to others undertaking similar coursework. I would especially like to hear users’ comments. I invite you to send your questions needing immediate answers to me at help@unit-smart.com, and any other suggestions or complaints to author@unit-smart.com. I look forward to hearing from you.

Dave Conklin
August 26, 2000
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installing EE200 in your TI-92 Plus Calculator</td>
<td>1</td>
</tr>
<tr>
<td>What EE200 Is Good For...</td>
<td>5</td>
</tr>
<tr>
<td>Detection of unit balance errors; Automatic conversion between units</td>
<td></td>
</tr>
<tr>
<td>of different scales; Knowing what units the answer is in; Putting</td>
<td></td>
</tr>
<tr>
<td>the answer into the desired units; Saving your work for checking</td>
<td></td>
</tr>
<tr>
<td>later; Importing equations from da Vinci Technologies’ EE•Pro software.</td>
<td></td>
</tr>
<tr>
<td>What EE200 Will and Won’t Do For You</td>
<td>6</td>
</tr>
<tr>
<td>You have to enter the equations yourself; EE200 alerts you to unit</td>
<td></td>
</tr>
<tr>
<td>balance errors; EE200 isolates the unknowns and solves the equation</td>
<td></td>
</tr>
<tr>
<td>set simultaneously. It labels the results with their units. EE200</td>
<td></td>
</tr>
<tr>
<td>displays equations in textbook form with all the units visible.</td>
<td></td>
</tr>
<tr>
<td>Getting Started – An Easy Problem from a Real Midterm</td>
<td>7</td>
</tr>
<tr>
<td>1 equation in 1 unknown; Entering numbers with associated units.</td>
<td></td>
</tr>
<tr>
<td>2nd Example – Applying Kirchoff’s Current Law and</td>
<td>10</td>
</tr>
<tr>
<td>Ohm’s Law</td>
<td></td>
</tr>
<tr>
<td>2 equations in 2 unknowns; Power check.</td>
<td></td>
</tr>
<tr>
<td>3rd Example – Maximum Power Transfer and Mesh</td>
<td>13</td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td>4 equations in 4 unknowns; Entering a value directly in the Solver</td>
<td></td>
</tr>
<tr>
<td>screen; Saving your work to check later.</td>
<td></td>
</tr>
<tr>
<td>4th Example – Mesh Analysis in the Phasor Domain</td>
<td>15</td>
</tr>
<tr>
<td>Complex variables & values; Changing the notation rules; Viewing</td>
<td></td>
</tr>
<tr>
<td>long equations and values; Switching between polar & rectangular form.</td>
<td></td>
</tr>
<tr>
<td>How Does EE200 Work?</td>
<td>19</td>
</tr>
<tr>
<td>Notation rules; The attributes of a variable; Natural language syntax</td>
<td></td>
</tr>
<tr>
<td>for units; EE200 sets up the problem for the calculator’s math engine.</td>
<td></td>
</tr>
<tr>
<td>Examining the Raw Solution</td>
<td>23</td>
</tr>
<tr>
<td>Arbitrary Integers in the Solution</td>
<td>23</td>
</tr>
<tr>
<td>Multiple Solutions</td>
<td>23</td>
</tr>
<tr>
<td>Useable vs. Unusable Solutions</td>
<td>24</td>
</tr>
<tr>
<td>Constraints on Variables</td>
<td>25</td>
</tr>
<tr>
<td>Graphing</td>
<td>26</td>
</tr>
<tr>
<td>Saving Your Work – Tactics for Taking Tests</td>
<td>28</td>
</tr>
<tr>
<td>Getting Exactly the Unit You Want</td>
<td>28</td>
</tr>
<tr>
<td>Redefining softkeys; Overriding the notation rules for a specific</td>
<td></td>
</tr>
<tr>
<td>variable; What to do if the unit you want isn’t built-in.</td>
<td></td>
</tr>
<tr>
<td>How to Import Equations from EE•Pro</td>
<td>31</td>
</tr>
<tr>
<td>How to Get Technical Support for EE200</td>
<td>31</td>
</tr>
<tr>
<td>How to Send Suggestions and Criticisms to the Developer</td>
<td>31</td>
</tr>
<tr>
<td>Appendix A – Specifications</td>
<td>32</td>
</tr>
<tr>
<td>Appendix B – Built-In Unit Categories</td>
<td>33</td>
</tr>
<tr>
<td>Index</td>
<td>35</td>
</tr>
</tbody>
</table>

EE200 Users Guide for TI-92 Plus Calculators