Quadratics and Parabolas
Prof. Townsend
MTH 112
Fall 2015

We now look at three variations of the same equation.

\[y = x^2 - 2x - 3 \]

Define \(a = 1 \)

Define \(b = 2 \)

Define \(c = 3 \)

\[b^2 - 4ac = 16 \]

\[\text{solve} \left(ax^2 + bx + c = 0, x \right) \]

\(x = -1 \) or \(x = 3 \)

\[y = x^2 - 2x + 1 \]

Define \(a = 1 \)

Define \(b = 2 \)

Define \(c = 1 \)

\[b^2 - 4ac = 0 \]

\[\text{solve} \left(ax^2 + bx + c = 0, x \right) \]

\(x = 1 \)

\[y = x^2 - 2x + 5 \]

Define \(a = 1 \)

Define \(b = 2 \)

Define \(c = 5 \)

\[b^2 - 4ac = -16 \]

\[\text{solve} \left(ax^2 + bx + c = 0, x \right) \]

false
Now look at where the graphs cross the x-axis.

These points are called by several names;
- the roots of the equations
- the zeros of the equations
- the x-intercepts of the equations.

Interesting points on the graph:

<table>
<thead>
<tr>
<th>Name</th>
<th>Where is it on the graph?</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-intercept</td>
<td>Where the graph crosses the x axis</td>
<td>y = 0</td>
</tr>
<tr>
<td>y-intercept</td>
<td>Where the graph crosses the y axis</td>
<td>x = 0</td>
</tr>
</tbody>
</table>
| Vertex | Point on the graph is a Maximum (when $a < 0$) or Minimum (when $a > 0$) | $x_v = \frac{-b}{2a}$
 | | $y_v = f(x_v)$ i.e. plug x_v into the y equation |

The Discriminant: $b^2 - 4ac$
i.e. what’s under the square root symbol

<table>
<thead>
<tr>
<th>Equation</th>
<th>Number of solutions</th>
<th>Graphical realization</th>
</tr>
</thead>
</table>
| $b^2 - 4ac > 0$ | Two solutions of the quadratic formula | Vertex below the x axis $a > 0$
| | | Vertex above the x axis $a < 0$ |
| $b^2 - 4ac = 0$ | One solution of the quadratic formula | Vertex on the x axis |
| $b^2 - 4ac < 0$ | No solution of the quadratic formula | Vertex above the x axis $a > 0$
| | | Vertex below the x axis $a < 0$ |