Newton’s Law of Cooling

Our text writes that Newton’s Law of Cooling obeys the differential equation
\[\frac{dT}{dt} = -k(T - T_m) \]
where \(T \) is the time-dependent temperature of the object, \(T_m \) is the temperature of the medium which contains the object, and \(k \) is a materials dependent constant.

This equation can be solved in many ways.

1) First, we look at the equation as a separable equation. Change the variable from just \(T \) to \(T - T_m \). Then the equation can be written as
\[\frac{d(T - T_m)}{dt} = -k(T - T_m) \]
This form leads to
\[\frac{d(T - T_m)}{(T - T_m)} = -k dt \]
The solution is
\[T - T_m = Ce^{-kt} \]
i.e.
\[T = T_m + Ce^{-kt} \]

2) Now look at the equation as a linear equation.
\[\frac{dT}{dt} + kT = kT_m \]
Using the formula for the solution of a linear equation gives
\[I(t) = e^{kt} \]
\[\text{Integrating factor} \]
\[T(t) = \frac{1}{e^{kt}} \left[C + \int e^{kt} kT_m \, dt \right] \]
Since \(T_m \) and \(k \) are constants, they pull out of the integral giving
\[T(t) = \frac{1}{e^{kt}} \left[C + kT_m \int e^{kt} \, dt \right] = \frac{1}{e^{kt}} \left[C + kT_m \frac{e^{kt}}{k} \right] \]
A little algebra gives
\[T(t) = \frac{1}{e^{kt}} \left[C + T_m e^{kt} \right] = T_m + \frac{C}{e^{kt}} = T_m + Ce^{-kt} \]
The general solution is then given by
\[T = T_m + Ce^{-kt} \]

Next we give the constants \(C \) and \(k \) physical meaning.
3) We apply the initial condition \(T(0) = T_0 \) so
\[
T_0 = T_m + C
\]
Hence
\[
C = T_0 - T_m
\]
The solution is therefore
\[
T(t) = T_m + (T_0 - T_m)e^{-kt}
\]
Note that when \(t=0 \), the solution gives
\[
T(t) = T_m + (T_0 - T_m) = T_0
\]
and for long times,
\[
T(t) \to T_m
\]
as one would expect.

How long is a long time? EETs say that \(e^{-5} \) is close enough to 0, so when \(t = \frac{k}{5} \), the long time condition is reached. The constant \(k \) can now be given physical meaning. It is the inverse of the time constant, \(\tau \), for the problem.
\[
k = \frac{1}{\tau}
\]
A physically meaningful way of writing the solution of Newton’s Law of Cooling is therefore
\[
T(t) = T_m + (T_0 - T_m)e^{-\frac{t}{\tau}}
\]
Every symbol has a physical meaning.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>The time</td>
</tr>
<tr>
<td>(T(t))</td>
<td>The temperature of the object as a function of time.</td>
</tr>
<tr>
<td>(T_m)</td>
<td>The temperature of the medium.</td>
</tr>
<tr>
<td>(T_0)</td>
<td>The initial temperature of the object.</td>
</tr>
<tr>
<td>(\tau)</td>
<td>The time constant of the object in the medium. When (t > 5\tau), the temperature of the object has essentially reached the temperature of the medium.</td>
</tr>
</tbody>
</table>